# Set stuff there is some intresting question about discrete math ## why \\( \mathcal{P}(\emptyset) = \lbrace \emptyset \rbrace \\) consider \\( \mathcal(S) \\) where \\( S \\) is a set, for example - if \\( S = \lbrace a \rbrace \\), then \\( \mathcal{P}(S) = \lbrace \emptyset, \lbrace a \rbrace \rbrace \\), same as \\( \mathcal{P}(a) \\) - if \\( S = \lbrace a, b \rbrace \\), then \\( \mathcal{P}(S) = \lbrace \emptyset, \lbrace a \rbrace, \lbrace b \rbrace, \lbrace a, b \rbrace \rbrace \\), same as \\( \mathcal{P}(a, b) \\) - if \\( S = \lbrace \emptyset \rbrace \\), then \\( \mathcal{P}(S) = \lbrace \emptyset, \lbrace \emptyset \rbrace \rbrace \\), same as \\( \mathcal{P}(\emptyset) \\) so, because \\( \lbrace \rbrace \\) usually hidden, \\( \mathcal{P}(\emptyset) = \lbrace \emptyset \rbrace \\) ## let \\( A = \emptyset, B = \emptyset \\), how to \\( A \times B \\) Consider \\( A \times B = \lbrace (a,b) | a \in A, b \in B \rbrace \\) because - A is empty, no elements can be paired - B is also empty conlusion: no paired element = empty proof by cardinality \\( |A| = 0, |B| = 0, \text{so, when } |A \times B| = |A| \times |B| = 0 \times 0 = 0 \\) ## does \\( P(\emptyset) = \lbrace \lbrace \rbrace \rbrace = \lbrace \emptyset \rbrace \\) ? true, this is due \\( \lbrace \emptyset \rbrace \\) same as \\( \lbrace \lbrace \rbrace \rbrace \\), then consider example \\( P(a) = \lbrace \lbrace \rbrace, \lbrace a \rbrace\rbrace \\) ## Suppose X and Z are independent of each other - \\( | \mathcal{P}(X \cap Z)| \\) - \\( | X - Z | \\) - \\( | X \oplus Z | \\) - \\( | X \cap Z | \\) - \\( | \mathcal{P}(X) \cup \mathcal{P}(Z)| \\) - \\( | \overline{\mathcal{P}(X) \cup \mathcal{P}(Z)}| \\) nb: bagian ini belum jadi