# Set operations formula ### Union of Two Sets (cardinality) \\[ |A \cup B| = |A| + |B| - |A \cap B| \\] how to read: whole `A` and `B` add together, its make a data duplication on center of venn diagram, we remove that duplication using \\( |A \cap B| \\) ### Intersection (steps) its flip of Union \\[ |A \cup B| = |A| + |B| - |A \cap B| \\] \\[ |A \cap B| = |A| + |B| - |A \cup B| \\] ### Intersection of three sets \\[ |A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \\] how it works, de remove data duplication two times on \\( |A \cap B| \\), \\( |B \cap C| \\), and \\( |B \cap C| \\), then fill the empty section on the center which \\( |A \cap B \cap C| \\) This is proof of concept by nice guy on internet: [https://www.youtube.com/watch?v=vVZwe3TCJT8](https://www.youtube.com/watch?v=vVZwe3TCJT8). ### Difference \\[ |A - B| = |A| - |A \cup B| \\] ### Symetric difference #### 1. General formula \\[ A \space \triangle \space B = (A \cup B) - (A \cap B) \\] Cardinals version: \\[ | A \space \triangle \space B | = |A - B| + |B - A| \\] \\[ | A \space \triangle \space B | = |A| + |B| - 2|A \cap B| \\] #### 2. Symetric difference properties - \\( A \space \triangle \space B = B \space \triangle \space A \\) - \\( (A \space \triangle \space B) \space \triangle C = A \space \triangle \space (B \space \triangle C) \\) - \\( (A \space \triangle \space \emptyset) = A \\), why? - \\(A \space \triangle \space B = (A \cup B) - (B \cap A) \\) - \\(A \space \triangle \space \emptyset = (A \cup \emptyset) - (\emptyset \cap A) \\), but - \\( (A \cup \emptyset) = A \\) and \\( (\emptyset \cap A) = \emptyset \\) - \\( (A - \emptyset) = A \\) - \\( (A \space \triangle \space A) = \emptyset \\)